
CS 1112 Fall 2022 Prelim 1 October 18 7:30–9:00 PM

Name: NetID:
(Legibly print last name, first name, middle name)

Statement of integrity:

It is a violation of the Code of Academic Integrity to look at any exam other than your
own, to look at any reference material outside of this exam packet, to communicate with
anyone other than the exam proctors, or to otherwise give or receive any unauthorized
help during the exam.

Academic Integrity is expected of all students of Cornell University at all times. By submitting
this exam, you declare that you will not give, use, or receive unauthorized aid in this
examination.

Circle your discussion section:

Section Day and Time Instructor
201 W 10:10 AM - 11:00 AM Kelly Cheng
202 W 11:20 AM - 12:10 PM Xinran Zhu
203 W 12:25 PM - 1:15 PM Blaire Yu
204 W 1:30 PM - 2:20 PM Blaire Yu
205 W 2:40 PM - 3:30 PM Claire Liang
206 W 3:45 PM - 4:35 PM Claire Liang

Instructions:
• Check that this packet has 7 double-sided sheets.
• This is a 90-minute, closed-book exam; no calculators are allowed.
• The exam is worth a total of 100 points, so it’s about one point per minute!
• Read each problem completely, including any provided code, before starting it.
• Do not modify any given code.
• Raise your hand if you have any questions.
• Use the back of the pages if you need additional space.
• Indicate your final answer. If you supply multiple answers, you may receive a zero on that question.
• Use only Matlab code. No credit for code written in other programming languages.
• Assume there will be no input errors.
• Do not use switch, try, catch, break, continue, or return statements.
• Do not use built-in functions that have not been discussed in the course.
• You may find the following Matlab predefined functions useful: abs, sqrt, rem, floor, ceil, rand,

zeros, ones, linspace, length, input, fprintf, disp

Examples: rem(5,2) → 1, the remainder from 5 divided by 2
rand() → a random real value in the interval (0,1)
abs(-3) → 3, absolute value
floor(6.9), floor(6) → 6, rounds down to the nearest integer
ceil(8.1), ceil(9) → 9, rounds up to the nearest integer
length([2 4 8]) → 3, length of a vector
zeros(1,4) → 1 row 4 columns of zeros
linspace(3,5,10) → a vector of 10 real numbers evenly distributed in the interval [3,5]

1

Use this page for scratch work.

2

Question 1 (13 points)
Question 1.1 (8 points) Write in the box below the first 6 lines of output that would be produced by
executing the following script. Write on the blank the total number of times the disp function is called.
Note that disp([9, 8 ,7]) will display the vector as 9 8 7. If an error would occur during execution, write
all the output that would be produced, if any, before the error would occur, followed by the word “error”.

j = 1;
v = [9, 8, 7];
while j < 6

j = j + 1;
disp(j+1)
v(j+1) = v(j) + 1;
disp(v)

end

First 6 lines of output:

3
9 8 9
4
9 8 9 10
5
9 8 9 10 11

Total number of times disp is called: 10

Question 1.2 (5 points) What will be printed when the following script is executed? Please write your
answer in the correct order that they would be printed. If an error would occur during execution, write
all the output that would be produced, if any, before the error would occur, followed by the word “error”.

Script Function (in foo.m) Answer:
x = 2; y = 8; function x = foo(z,x) x is 3
z = foo(x,y); y = x; z is 3
fprintf('z is %d \n', z); x = z + ceil(rand); x is 2
fprintf('x is %d \n', x); z = y; y is 8
fprintf('y is %d \n', y); fprintf('x is %d \n', x);

3

Use this page for scratch work.

4

Question 2 (8 points)
Rewrite the following code fragment without using the logical operators && or || such that the variable
x is assigned the same value as the given fragment. (Do not use &, |, or xor either).

% assume that variables a, b, and c are each a numeric scalar

if a ∼= b || a == b + c
x = 1;

elseif c == b && a == b
x = 2;

else
x = 3;

end

Rewrite the code fragment here:

if a ∼= b
x = 1;

elseif a == b + c
x = 1;

elseif c == b
if a == b

x = 2;
else

x = 3;
end

else
x = 3;

end

5

Use this page for scratch work.

6

Question 3 (17 points)
The function big() takes a positive integer number as input and outputs the highest value digit in the
input. For example, big(7290) returns 9. Using the function big() (do not write the function), finish
the script below that prints the number in 1D array v that contains the largest digit. If multiple numbers
in v contain the largest digit, only the first one should be printed. Assume v is already defined, only
stores positive integers, and is not empty.
Example: if v = [820, 90, 2991, 7], the code should print the number 90.
Example: if v = [10, 58, 70], the code should print the number 58.
Be efficient for full credit: if your code finds a number with a 9 in it, it should not look at any other
numbers in the vector because it is not necessary. (HINT: use a while loop.)

len = length (v);

maximum = 0;
index = 0;
i = 1;

while i <= len && maximum ∼= 9
val = big(v(i));
if val > maximum

maximum = val;
index = i;

end
i = i + 1;

end

fprintf ('%d', ______________)v(index)

7

Use this page for scratch work.

8

Question 4 (40 points)
In this problem, you will study two different ways of finding the “greatest common divisor” (gcd) of two
positive integers. The gcd of two positive integers, m and n, is defined as the largest integer d, such that
d is a divisor of m (equivalently, m is a multiple of d) and d is a divisor of n (equivalently, n is a multiple
of d).
Question 4.1 (10 points) The brute-force way for computing the gcd of two positive integers m and n is
finding all the divisors of m and all the divisors of n, deciding which divisors they have in common, and
setting gcd to be the largest integer among all the common divisors of m and n. For example:

m = 12, n = 18
Divisors of m: 1, 2, 3, 4, 6, 12
Divisors of n: 1, 2, 3, 6, 9, 18

Common divisors: 1, 2, 3, 6
Greatest common divisor: 6

Another example: the gcd of 4 and 3 is 1, because it is the largest number that is a divisor of 4 and 3.
Implement the function findDivisors(m) that takes a positive integer m as its input, and returns the
number of positive divisors of m and a vector that contains all the positive divisors of m. (Hint: use the
rem() function)

function [num_divisors , divisors] = findDivisors (m)
% Determine the positive divisors of a positive integer m.
% Return variables :
% num_divisors : scalar storing the number of positive divisors of m
% divisors : vector storing the positive divisors of m

divisors = [];
num_divisors = 0;
for k = 1:m

if rem(m, k) == 0
num_divisors = num_divisors + 1;
divisors (num_divisors) = k;

end
end

9

Question 4.2 (20 points) Now implement the function gcdSlow(m, n) that makes use of the findDivisors(m)
function in (4.1) and finds the gcd of two positive integers m and n. No built-in MATLAB functions are
allowed in this question.
Use nested loops: one to loop through the divisors of m and other to loop through the divisors of n. Use
these loops to find the largest number that is in both sets of divisors. Efficiency is not a concern in this
part. Just build a solution that works.

function d_slow = gcdSlow (m, n)
% This function finds the greatest common divisor using the brute -force
% algorithm and findDivisors from 4.1.
% Returns the greatest common divisor of m and n.
% Assumes m and n are positive integers .

common = [];
[num_mdiv , m_divisors] = findDivisors (m);
[num_ndiv , n_divisors] = findDivisors (n);
num_cdiv = 0; % number of common divisors
for i = 1: num_mdiv

dm = m_divisors (i);
found = false;
j = 1;
while (∼found && j <= num_ndiv) % okay if this is just a for loop

if dm == n_divisors (j)
found = true;

end
j = j + 1;

end
if (found)

num_cdiv = num_cdiv + 1;
common (num_cdiv) = dm;

end
end
d_slow = common (num_cdiv);

10

Question 4.3 (10 points) The recipe for computing the gcd in (4.1) and (4.2) is correct, but it can be
slow when m and n are large integers. Therefore, you will implement an efficient way to compute the gcd
using the Euclidean algorithm. The Euclidean algorithm for finding the greatest common divisor of m
and n is listed in the three steps below (assuming m ≥ n > 0). The only built-in MATLAB function you
can use on this part is rem.

1. Calculate the remainder r from m divided by n.

2. If r is zero then n is the gcd.

3. Otherwise, let m = n and then n = r. Repeat from step 1.

Hint: use a while loop.
Complete the following function which implements the Euclidean algorithm for finding the gcd.

function d_fast = gcdFast (m, n)
% This function returns the gcd of m and n using the Euclidean algorithm .
% Assumes m and n are positive integers .
% Remember that the Euclidean algorithm requires m >= n but the inputs
% to this function do not necessarily already satisfy that criterion .

if m < n
temp = m;
m = n;
n = temp;

end

r = rem(m,n);
while r ∼= 0

m = n;
n = r;
r = rem(m,n);

end

d_fast = n;

Example of the Euclidean algorithm in action when m = 21 and n = 6:

1. Divide 21 by 6 and get the remainder r = 3

2. r is not zero so m = 6, n = 3

3. Divide 6 by 3 and get the remainder r = 0

4. Since r = 0, n = 3 is the gcd

11

Use this page for scratch work.

Example plot from the completed script in problem 5. →

12

Question 5 (22 points)
Complete the script below to draw n rows of rectangles in the 2D space defined by x values [x start,
x end] and y values [y start, y end]. Add code only to the boxes. See example on page 12.
All rectangles have the same vertical height of (y end - y start)/n. The horizontal width of each rectangle
should be uniformly random in the range (0, s), where s = (x end - x start)/5.
Rows of rectangles are adjacent to each other. The bottom edge of the bottom-most row of rectangles is
at y start. Rectangles in the same row are adjacent to each other. In each row, start generating rectangles
from left to right, with the first rectangle having its left edge at x start. When you are drawing rectangles
in any row, when you generate a rectangle width that would exceed x end, do not draw that rectangle
and start drawing the next row of rectangles.
For a rectangle with bottom left corner at (x,y), the color is determined by linear interpolation, depending
on the distance between (x,y) and (x end, y end)—a rectangle with (x,y) = (x start,y start) would be
blue, and a rectangle with (x,y) = (x end, y end) would be red. Recall the distance between arbitrary
points (x1,y1) and (x2, y2) is d = sqrt((x1-x2)ˆ2 + (y1-y2)ˆ2).
Assume you can use function DrawRect NB(x,y,L,W,c), which draws a rectangle with no border and
with vertices (x,y), (x+L, y), (x+L, y+W) and (x, y+W).

close all
figure
hold on
red = [1 0 0]; blue = [0 0 1];
x_start = 0; y_start = 0;
x_end = 8; y_end = 5;
n = 6; s = (x_end - x_start)/5;

dist_max = sqrt ((x_end - x_start)ˆ2 + (y_end - y_start)ˆ2);
y = y_start ;

for row = 1:n

x = x_start ;
length_cur = rand*s;

while x + length_cur <= x_end
dist = sqrt ((x_end -x)ˆ2 + (y_end -y)ˆ2);
colr = blue + (red - blue)*(dist - dist_max)/(0 - dist_max);
% alternate color interpolation using textbook method
% colr = (dist/ dist_max)* blue + (1- dist/ dist_max)* red;
DrawRect_NB (x, y, length_cur , (y_end - y_start)/n, colr)
x = x + length_cur ;
length_cur = rand*s;

end
y = y + (y_end - y_start)/n;

end

13

Use this page for scratch work.

14

